廣義對(duì)稱性是一種超越群論的新型的對(duì)稱性,其需要用高一維的拓?fù)湫騺?lái)描寫。演生的廣義對(duì)稱性可能完全決定無(wú)能隙態(tài)(也就是量子場(chǎng)論)的低能性質(zhì),這 改變了我們對(duì)量子場(chǎng)論和無(wú)能隙系統(tǒng)的基本看法和思路。這將成為量子場(chǎng)論與強(qiáng)關(guān)聯(lián)量子物質(zhì)研究的一個(gè)重要方向,甚至可能是一個(gè)主導(dǎo)的方向。
撰文|文小剛(美國(guó)國(guó)家科學(xué)院院士、麻省理工學(xué)院格林講席教授)
編輯 | 陳鋼(北京大學(xué))
凝聚態(tài)物理是研究多體系統(tǒng) (如材料) 物理性質(zhì)的學(xué)科。該領(lǐng)域最重要的問(wèn)題之一是理解材料中大量自由度在量子基態(tài) (即低溫態(tài)) 下的組織形式,因?yàn)橄到y(tǒng)幾乎所有的低溫性質(zhì)都由此決定。我們將量子基態(tài)中的這種組織形式稱為“量子糾纏模式”。
數(shù)學(xué)上,N粒子系統(tǒng)的基態(tài)由波函數(shù),一個(gè)關(guān)于N個(gè)變量的復(fù)函數(shù)Φ(m1,m2, …,mN),來(lái)描述。要理解多體系統(tǒng)的量子糾纏模式 (即理解多體系統(tǒng)的量子相——這里的“相”指液相、固相等相態(tài)) ,我們需要對(duì)N→∞極限下的復(fù)波函數(shù)Φ(m1,m2, …,mN)進(jìn)行分類。這種分類問(wèn)題是物理學(xué)最基礎(chǔ)的問(wèn)題之一,因?yàn)樗鼪Q定了多體系統(tǒng)可能存在的相態(tài)。
由于歷史原因,長(zhǎng)期以來(lái)物理學(xué)家認(rèn)為波函數(shù) (即量子糾纏模式) 可通過(guò)對(duì)稱性分類,例如波函數(shù)是否在"自旋"旋轉(zhuǎn)Φ(mi) → Φ(mi+m)下保持不變。基于此種觀點(diǎn),人們認(rèn)為物質(zhì)的相也由對(duì)稱性分類,而對(duì)稱性都可用數(shù)學(xué)中的群論來(lái)描寫。這就是群論成為物理學(xué)重要數(shù)學(xué)基礎(chǔ)的原因,也是每位物理學(xué)生都需要學(xué)習(xí)群論的原因。然而1989年的研究發(fā)現(xiàn),僅憑對(duì)稱性不足以完全分類波函數(shù)Φ(m1,m2, …,mN)具備的所有可能的組織形式。為了理解超越對(duì)稱性的新型多體組織形式,我們需要把物質(zhì)態(tài)分為兩類。一類是有能隙的物質(zhì)態(tài),一類是無(wú)能隙的物質(zhì)態(tài)。有能隙的物質(zhì)態(tài),包括絕緣體,量子霍爾態(tài)等等,其需要注入一個(gè)有限大小的能量來(lái)產(chǎn)生一個(gè)激發(fā)。無(wú)能隙的物質(zhì)態(tài),包括超導(dǎo)體,超流體,量子相變的臨界點(diǎn)等等,其產(chǎn)生一個(gè)激發(fā)所需的能量可以是無(wú)限小。這兩種物質(zhì)態(tài),都具有超越對(duì)稱性的組織形式(也具有由對(duì)稱性所描寫的組織形式)。
在有能隙系統(tǒng)中,這種超越對(duì)稱性的新型多體組織形式被稱為“拓?fù)湫?/strong>” (2010年,我們意識(shí)到拓?fù)湫虮举|(zhì)上是長(zhǎng)程糾纏的模式) ,這開(kāi)啟了凝聚態(tài)物理理論研究的一個(gè)新方向。
超越對(duì)稱性框架,在N→∞極限下,對(duì)波函數(shù)Φ(m1,m2, …,mN)進(jìn)行完全分類,這一數(shù)學(xué)問(wèn)題極具挑戰(zhàn)性。而發(fā)展這一描述多體糾纏模式的數(shù)學(xué)理論至關(guān)重要,代表著理論物理的未來(lái)方向。
其實(shí),多體糾纏 (即拓?fù)湫颍?是物理學(xué)中的全新現(xiàn)象,其需要全新數(shù)學(xué)語(yǔ)言來(lái)描述。這正像牛頓時(shí)代曲線運(yùn)動(dòng)需要全新的數(shù)學(xué)——微積分——來(lái)描述。這種新數(shù)學(xué)是什么?2005年以來(lái)的研究表明,高階融合范疇理論可能正是描述長(zhǎng)程糾纏的數(shù)學(xué)框架,正如群論是描述物理中對(duì)稱破缺的數(shù)學(xué)框架,這為我們?nèi)胬斫庥心芟段飸B(tài)提供了數(shù)學(xué)的框架及語(yǔ)言。這讓我們對(duì)有能隙物態(tài)有了一個(gè)完全系統(tǒng)的理解。
下一步,我們想要完全系統(tǒng)地理解聯(lián)無(wú)能隙量子物態(tài)與量子場(chǎng)論 (這兩個(gè)名稱指向同一問(wèn)題) 。這些無(wú)能隙的量子物質(zhì)可能甚至沒(méi)有弱相互作用的準(zhǔn)粒子激發(fā)。這是理論物理學(xué)長(zhǎng)期懸而未決的難題。我們?cè)诹孔由珓?dòng)力學(xué) (QCD) 、早期宇宙相變、高溫超導(dǎo)體、量子自旋液體、量子材料臨界點(diǎn)等問(wèn)題中都面臨這一困境。近年來(lái)理論物理學(xué)的新進(jìn)展,讓我們有望在這一長(zhǎng)期難題上取得突破,這或?qū)⑼苿?dòng)理論物理學(xué)進(jìn)入新紀(jì)元。
這一新發(fā)展受到兩個(gè)方面的推動(dòng):第一個(gè)是過(guò)去三十余年通過(guò)對(duì)有能隙高度糾纏物質(zhì)相 (即拓?fù)湫颍?的研究,我們發(fā)現(xiàn)拓?fù)湫蚝投囿w糾纏模式可通過(guò)新數(shù)學(xué)理論——高階融合范疇——來(lái)進(jìn)行描述和分類;第二個(gè)是近十年對(duì)對(duì)稱性本質(zhì)有了更全面深入的理解。
眾所周知,對(duì)稱性可約束低能動(dòng)力性質(zhì),也就是限制無(wú)能隙態(tài)和量子場(chǎng)論的性質(zhì)。同樣值得注意的是,無(wú)能隙態(tài)和量子場(chǎng)論在低能區(qū)可呈現(xiàn)演生對(duì)稱性,我們可利用這種演生對(duì)稱性來(lái)表征無(wú)能隙態(tài)和量子場(chǎng)論的低能性質(zhì)。
過(guò)去十年來(lái),我們發(fā)現(xiàn)量子系統(tǒng)演生對(duì)稱性的形式十分豐富:既包括傳統(tǒng)群論描述的對(duì)稱性,也包含反常對(duì)稱性、高階群所描述的高階對(duì)稱性、反常高階對(duì)稱性,以及超越群與高階群的不可逆對(duì)稱性等。所有這些廣義對(duì)稱性都可用于表征無(wú)能隙態(tài)和量子場(chǎng)論的低能性質(zhì)。
當(dāng)對(duì)稱性被如此深度推廣后,其與 (不可逆的) 引力反常已難以區(qū)分——后者同樣可約束低能動(dòng)力性質(zhì)。我們又知道 (不可逆的) 引力反常本質(zhì)上就是高一維的拓?fù)湫?。這兩點(diǎn)發(fā)現(xiàn)引導(dǎo)我們建立了描述上述廣義對(duì)稱性的統(tǒng)一理論。這一統(tǒng)一理論不是群論,而是高一維的拓?fù)湫?,也就是?shù)學(xué)上的高階融合范疇。
當(dāng)把對(duì)稱性理論如此深遠(yuǎn)地?cái)U(kuò)展之后,我們突然發(fā)現(xiàn),有一個(gè)愿景,或者說(shuō)是夢(mèng)想,也許可以成真:演生的廣義對(duì)稱性可能完全決定無(wú)能隙態(tài) (也就是量子場(chǎng)論) 的低能性質(zhì)。換言之,每一個(gè)可能的低能性質(zhì)都對(duì)應(yīng)于一個(gè)演生的廣義對(duì)稱性。如此一來(lái),對(duì)高階融合范疇的分類 (既對(duì)高一維的拓?fù)湫虻姆诸悾?將導(dǎo)致對(duì)所有可能低能性質(zhì) (即可能的共形場(chǎng)論) 的分類。若此猜想成立,我們對(duì)無(wú)能隙態(tài)和量子場(chǎng)論的理解將躍升至新高度。量子場(chǎng)論問(wèn)題,將不是一個(gè)微積分問(wèn)題、微分方程問(wèn)題、格林函數(shù)問(wèn)題或纖維叢問(wèn)題,而是一個(gè)范疇問(wèn)題?;蛘吒M(jìn)一步,是一個(gè)數(shù)論問(wèn)題。這完全改變了我們對(duì)量子場(chǎng)論和無(wú)能隙系統(tǒng)的基本看法和思路。這將成為量子場(chǎng)論與強(qiáng)關(guān)聯(lián)量子物質(zhì)研究的一個(gè)重要的方向,甚至可能是一個(gè)主導(dǎo)的方向。
中國(guó)和華裔科學(xué)家在這一新方向有眾多開(kāi)創(chuàng)性的貢獻(xiàn)。下面羅列一些這方面早期的直接相關(guān)和間接相關(guān)的研究工作:
[1] Alexei Kitaev, Liang Kong
Models for gapped boundaries and domain walls
https://arxiv.org/abs/1104.5047
[2] L. Kong and X.-G. Wen,
Braided fusion categories, gravitational anomalies, and the mathematical framework for topological orders in any dimensions,
https://arxiv.org/abs/1405.5858
[3] D. Fiorenza and A. Valentino,
Boundary conditions for topological quantum field theories, anomalies and projective modular functors,
Commun. Math. Phys. 338, 1043 (2015),
https://arxiv.org/abs/1409.5723
[4] Maissam Barkeshli, Parsa Bonderson, Meng Cheng, Zhenghan Wang
Symmetry Fractionalization, Defects, and Gauging of Topological Phases
https://arxiv.org/abs/1410.4540
[5] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett,
Generalized global symmetries,
J. High Energ. Phys. 172, (2015);
https://arxiv.org/abs/1412.5148
[6] L. Kong, X.-G. Wen, and H. Zheng,
Boundary-bulk relation for topological orders as the functor mapping higher
categories to their centers,
https://arxiv.org/abs/1502.01690
[7] Meng Cheng, Cenke Xu
A series of (2+1)D Stable Self-Dual Interacting Conformal Field Theories
https://arxiv.org/abs/1609.02560
[8] Tian Lan, Liang Kong, Xiao-Gang Wen
A classification of 3+1D bosonic topological orders (I): the case when point-like excitations are all bosons
https://arxiv.org/abs/1704.04221
[9] L. Kong and H. Zheng,
Gapless edges of 2d topological orders and enriched monoidal categories,
Nucl. Phys. B 927, 140 (2018),
https://arxiv.org/abs/1705.01087
[10] C.-M. Chang, Y.-H. Lin, S.-H. Shao, Y. Wang, and X. Yin,
Topological defect lines and renormalization group flows in two dimensions,
J. High Energ. Phys. 2019 (1), 26,
https://arxiv.org/abs/1802.04445
[11] F. Benini, C. Córdova, and P.-S. Hsin,
On 2-group global symmetries and their anomalies,
J. High Energ. Phys. 2019 (3), 118,
https://arxiv.org/abs/1803.09336
[12] C. Zhu, T. Lan, and X.-G. Wen,
Topological nonlinear σ-model, higher gauge theory, and a systematic con-
struction of 3+1D topological orders for boson systems,
Phys. Rev. B 100, 045105 (2019),
https://arxiv.org/abs/1808.09394
[13] Qing-Rui Wang, Zheng-Cheng Gu
Construction and classification of symmetry protected topological phases in interacting fermion systems
https://arxiv.org/abs/1811.00536
[14] Z. Wan and J. Wang,
Higher anomalies, higher symmetries, and cobordisms I: classification of higher-
symmetry-protected topological states and their boundary fermionic/bosonic anomalies via a generalized cobordism theory,
Annals of Mathematical Sciences and Applications 4, 107 (2019), https://arxiv.org/abs/1812.11967
[15] Ce Shen, Ling-Yan Hung
A Defect Verlinde Formula
https://arxiv.org/abs/1901.08285
[16] R. Thorngren and Y. Wang,
Fusion Category Symmetry I: Anomaly In-Flow and Gapped Phases,
J. High Energ. Phys. 2024, 132,
https://arxiv.org/abs/1912.02817
[17] W. Ji and X.-G. Wen,
Categorical symmetry and non-invertible anomaly in symmetry-breaking and topological phase transitions,
Phys. Rev. Res. 2, 033417 (2020),
https://arxiv.org/abs/1912.13492
[18] T. Lichtman, R. Thorngren, N. H. Lindner, A. Stern, and E. Berg,
Bulk anyons as edge symmetries: Boundary phase diagrams of topologically ordered
states,
Physical Review B 104, 075141 (2021),
https://arxiv.org/abs/2003.04328
[19] L. Kong, T. Lan, X.-G. Wen, Z.-H. Zhang, and H. Zheng,
Algebraic higher symmetry and categorical symmetry: A holographic and entanglement view of symmetry,
Phys. Rev. Res. 2, 043086 (2020),
https://arxiv.org/abs/2005.14178
[20] Yuting Hu, Yidun Wan
Electric-Magnetic duality in twisted quantum double model of topological orders
https://arxiv.org/abs/2007.15636
[21] D. Gaiotto and J. Kulp,
Orbifold groupoids,
J. High Energ. Phys. 2021 (2), 132,
https://arxiv.org/abs/2008.05960
[22] Yuting Hu, Zichang Huang, Ling-yan Hung, Yidun Wan
Anyon Condensation: Coherent states, Symmetry Enriched Topological Phases, Goldstone Theorem, and Dynamical Rearrangement of Symmetry
https://arxiv.org/abs/2109.06145
[23] Yu-An Chen, Po-Shen Hsin
Exactly Solvable Lattice Hamiltonians and Gravitational Anomalies
https://arxiv.org/abs/2110.14644
[24] Yichul Choi, Clay Cordova, Po-Shen Hsin, Ho Tat Lam, Shu-Heng Shao
Non-Invertible Duality Defects in 3+1 Dimensions
https://arxiv.org/abs/2111.01139
[25] Justin Kaidi, Kantaro Ohmori, Yunqin Zheng
Kramers-Wannier-like duality defects in (3+1)d gauge theories
https://arxiv.org/abs/2111.01141
[26] F. Apruzzi, F. Bonetti, I. Etxebarria, S. Hosseini, and S. Sch?fer-Nameki,
Symmetry TFTs from string theory,
Communications in Mathematical Physics 402, 895 (2023),
https://arxiv.org/abs/2112.02092
[27] A. Chatterjee and X.-G. Wen,
Symmetry as a shadow of topological order and a derivation of topological holographic principle,
Phys. Rev. B 107, 155136 (2023),
https://arxiv.org/abs/2203.03596
[28] Jian-Hao Zhang, Shang-Qiang Ning, Yang Qi, Zheng-Cheng Gu
Construction and classification of crystalline topological superconductor and insulators in three-dimensional interacting fermion systems
https://arxiv.org/abs/2204.13558
[29] Zhi-Feng Zhang, Qing-Rui Wang, Peng Ye
Non-Abelian Fusion, Shrinking and Quantum Dimensions of Abelian Gauge Fluxes
https://arxiv.org/abs/2208.09228
[30] Maissam Barkeshli, Yu-An Chen, Po-Shen Hsin, Ryohei Kobayashi
Higher-group symmetry in finite gauge theory and stabilizer codes
https://arxiv.org/abs/2211.11764
[31] Wen-Yuan Liu, Shou-Shu Gong, Wei-Qiang Chen, Zheng-Cheng Gu
Emergent Symmetry in Quantum Phase Transitions: From Deconfined Quantum Critical Point to Gapless Quantum Spin Liquid
https://arxiv.org/abs/2212.00707
[32] Yi-Nan Wang, Yi Zhang
Fermionic Higher-form Symmetries
https://arxiv.org/abs/2303.12633
[33] T. Lan and J.-R. Zhou,
Quantum Current and Holographic Categorical Symmetry
https://arxiv.org/abs/2305.12917
[34] Linhao Li, Masaki Oshikawa, Yunqin Zheng
Intrinsically/Purely Gapless-SPT from Non-Invertible Duality Transformations
https://arxiv.org/abs/2307.04788
[35] Ruizhi Liu, Ho Tat Lam, Han Ma, Liujun Zou
Symmetries and anomalies of Kitaev spin-S models: Identifying symmetry-enforced exotic quantum matter
https://arxiv.org/abs/2310.16839
[36] Xing-Yu Ren, Shang-Qiang Ning, Yang Qi, Qing-Rui Wang, Zheng-Cheng Gu
Stacking Group Structure of Fermionic Symmetry-Protected Topological Phases
https://arxiv.org/abs/2310.19058
[37] Gong Cheng, Lin Chen, Zheng-Cheng Gu, Ling-Yan Hung
Precision reconstruction of rational CFT from exact fixed point tensor network
https://arxiv.org/abs/2311.18005
[38] Leonardo A. Lessa, Meng Cheng, Chong Wang
Mixed-state quantum anomaly and multipartite entanglement
https://arxiv.org/abs/2401.17357
[39] Liang Kong, Zhi-Hao Zhang, Jiaheng Zhao, Hao Zheng
Higher condensation theory
https://arxiv.org/abs/2403.07813
[40] Ruochen Ma, Yabo Li, Meng Cheng
Quantum Cellular Automata on Symmetric Subalgebras
https://arxiv.org/abs/2411.19280
[41] Ryohei Kobayashi, Yuyang Li, Hanyu Xue, Po-Shen Hsin, Yu-An Chen
Universal microscopic descriptions for statistics of particles and extended excitations
https://arxiv.org/abs/2412.01886
本文轉(zhuǎn)載自《返樸》微信公眾號(hào)
《物理》50年精選文章
特別聲明:以上內(nèi)容(如有圖片或視頻亦包括在內(nèi))為自媒體平臺(tái)“網(wǎng)易號(hào)”用戶上傳并發(fā)布,本平臺(tái)僅提供信息存儲(chǔ)服務(wù)。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.