作者:寵物醫師網編委會
點擊閱讀作者更多臨床文獻
看著愛寵被關節炎折磨得步履蹣跚,因過敏反復抓撓潰爛的皮膚,或是忍受化療的副作用對抗癌癥——這些場景是否讓你揪心?
單抗療法:一針導航,直搗病根。
摘要
近四十年來,單克隆抗體(Monoclonalantibodies,mAbs)廣泛應用于人類醫療保健領域,犬貓與人類共享90%以上慢性病類型(如癌癥、關節炎、過敏癥以及慢性疼痛等慢性疾病),但過去治療常依賴激素、止痛藥,長期使用易引發胃腸損傷、免疫力下降,mAb療法則對小動物的這些疾病提供新的靶向治療方法。
本綜述旨在探究mAb療法在小動物醫學中的治療潛力,重點關注目前已獲批的產品,包括它們的作用機制、臨床療效以及安全方面的問題。
關鍵詞:檢單克隆抗體;免疫療法;慢性疾病;淋巴瘤;骨關節炎;特應性皮炎;寵物
一、引言
單克隆抗體(mAbs)在治療癌癥、自身免疫性疾病以及其他病癥(如傳染病、炎癥性疾病和過敏癥)中展現不可估量的價值[1]。
單克隆抗體目前正被用于治療犬和貓的慢性疾病。在這篇綜述文章中,我們回顧了單克隆抗體在獸醫領域作為生物治療藥物的應用情況,重點關注已獲批且在市場上可購買到的產品。
圖1獸醫學中單克隆抗體的時間表
表1 批準用于伴侶動物的獸醫單克隆抗體簡介(按時間順序)
美國農業部有條件許可證
二、治療犬特應性皮炎的單抗體
用于治療犬特應性皮炎(AD)的單克隆抗體--塞妥敏
特應性皮炎是一種慢性、復雜的疾病,其特征為皮膚發炎和瘙癢;
過敏性皮炎更寬泛,指的是由各種過敏原(如食物、跳蚤叮咬或化學物質)引起的皮膚炎癥。
總體而言,特應性皮炎影響著10%-15%的犬,并且具有遺傳易感性[39]。犬的特應性皮炎需要終生管理,而且在大多數患病犬中,都需要長期治療[40]。
抗IL-31單克隆抗體被設計用于中和主要由T淋巴細胞產生的游離IL-31。它的研發源于對IL-31參與犬骨關節炎的認識[42]。抗IL-31單克隆抗體(塞妥敏)的作用機制如圖3所示。
美國農業部于2016年12月批準了首個用于治療犬特應性皮炎和過敏性皮炎的單克隆抗體,這是一種犬源化的抗IL-31單克隆抗體。塞妥敏(Librela?)最初的標簽適應癥是用于治療體重3kg及以上、任何年齡的犬與特應性皮炎相關的臨床癥狀。
圖2.塞妥敏阻斷瘙癢循環的機制
注:塞妥敏阻斷瘙癢循環的機制至靶向犬白細胞介素31(IL-31),IL-31在患有特應性皮炎的犬的瘙癢發展過程中起著關鍵作用。通過中和IL-31,洛維單抗能有效減輕瘙癢,并有助于最大程度減少炎癥性皮膚損傷。
三、控制犬貓疼痛的單抗
用于控制犬貓疼痛的抗神經生長因子的單克隆抗體---夫盧維單抗和貝汀維單抗
骨關節炎(OA)相關的疼痛管理仍然頗具挑戰,也是導致犬貓安樂死的常見原因[45]。
犬貓骨關節炎疼痛管理的傳統療法包括:減重、運動、針灸、按摩,以及藥物治療。
藥物包括:非甾體抗炎藥(NSAIDs)、加巴噴丁和曲馬多。
目前,非甾體抗炎藥中,尤其是環氧化酶-2(COX-2)抑制劑,常用于犬貓的疼痛控制。但長期使用可能引起不良反應,如胃腸道刺激、腎功能障礙和肝毒性[20,46]。此外,單獨使用非甾體抗炎藥可能無法完全緩解疼痛[47]。
神經生長因子(NGF)對于感覺神經元和交感神經元的生長及維持至關重要[48]。抗NGF療法是一種對抗慢性疼痛的新型療法[20]。人們對各種針對該途徑的單克隆抗體療法展開了研究,以開發治療慢性疼痛的藥物療法。這些單克隆抗體針對犬貓特異性NGF[49]。
圖3 神經生長因子(NGF)在骨關節炎的疼痛感知和神經系統可塑性中起關鍵作用
犬骨關節炎(Caninestiflejoint with OA):展示了患有骨關節炎的犬膝關節,關節處軟骨等結構出現病變,釋放神經生長因子(NGF)。
NGF與TrkA受體結合:NGF從病變關節釋放,與感覺神經纖維上的TrkA受體結合。
同時,炎癥/免疫細胞釋放組胺等物質,參與這一過程。
受體/離子通道的局部調節:NGF/TrkA復合物逆向運輸至背根神經節(DRG)。
這導致相關物質轉錄增加,包括P物質(SP)、瞬時受體電位香草酸亞型1(TRPV1)、降鈣素基因相關肽(CGRP)、腦源性神經營養因子(BDNF)、酸敏感離子通道3(ASIC3)等。
還會對鈉離子(Na+)、鈣離子(Ca2+)、鉀離子(K+)通道,以及緩激肽受體2(BR2)等進行局部調節。
背角突觸:
初級傳入神經釋放SP、BDNF、CGRP等神經遞質。
這些神經遞質作用于二級神經元上的相應受體,如CGRP受體(CGRPR)、NK-1受體、N-甲基-D-天冬氨酸受體(NMDA)、α-氨基-3-羥基-5-甲基-4-異惡唑丙酸受體(AMPA)等。
引發一系列離子流動(如Ca2+、Na+、Mg2+),信號進一步向大腦傳遞,產生疼痛感覺。
注:由軟骨細胞釋放的NGF與感覺纖維和免疫細胞上的原肌球蛋白受體激酶A(TrkA)結合,促使炎癥介質/自體活性物質(如組胺和血清素)的釋放。NGF/TrkA復合物被轉運至背根神經節(DRG),增加疼痛相關受體和離子通道(如瞬時受體電位香草酸亞型1(TRPV1)、酸敏感離子通道(ASIC)、電壓門控鈉通道(Nav))的表達,從而導致外周敏化。NGF還會增強促傷害感受性神經遞質(P物質(SP)、降鈣素基因相關肽(CGRP)、腦源性神經營養因子(BDNF))的產生,這些神經遞質釋放后會刺激二級神經元,有可能引起中樞敏化。這個過程放大了從外周(如關節)到大腦的疼痛信號傳導[20]。
縮寫:5-HT:血清素;AMPA:α-氨基-3-羥基-5-甲基-4-異惡唑丙酸;ASIC:酸敏感離子通道;BDNF:腦源性神經營養因子;BR2:緩激肽受體2;Cav:鈣通道;CGRP:降鈣素基因相關肽;DRG:背根神經節;K:鉀通道;Nav:鈉通道;NMDA:N-甲基-D-天冬氨酸受體;NGF:神經生長因子;SP:P物質;TrkA/B:原肌球蛋白受體激酶A/B。
夫盧維單抗(Solensia?)是一種貓源化的免疫球蛋白G(IgG)單克隆抗體,它能與神經生長因子(NGF)結合,阻斷其在貓體內的致痛作用。當夫盧維單抗與NGF結合時,它會阻止疼痛信號傳至大腦。夫盧維單抗在貓體內耐受性良好;在誘發炎癥后長達7d的時間里,它能顯著減輕跛行癥狀。
貝地維單抗(Librela?)是一種犬源化IgG單克隆抗體,其可變區由B淋巴細胞表達,并通過中國倉鼠卵巢(CHO)細胞中的重組DNA技術進行生產。貝地維單抗每月皮下注射一次,靶向NGF。Librela?是美國首個也是唯一獲批用于控制犬骨關節炎疼痛的注射用單克隆抗體治療藥物。
四、治療犬免疫抑制性癌癥的單抗
用于治療犬免疫抑制性癌癥的單克隆抗體--吉維單抗
肥大細胞瘤(MCTs)和黑色素瘤是犬中最常見的癌癥類型,分別占皮膚癌病例的20%[50]和所有惡性腫瘤的7%[51],此外它們還具有免疫抑制性[52]。這些腫瘤的免疫抑制特性為探索靶向這些檢查點分子的療法(如抗PD-1單克隆抗體)提供了理論依據,目的是重新激活免疫反應并增強抗腫瘤免疫力。
在獸醫腫瘤學領域,研究越來越側重于開發犬特異性抗體,抗PD-1和抗PD-L1療法展現出顯著潛力,這反映了人類癌癥治療領域所取得的進展(圖4)[54,55]。這兩種單克隆抗體都被證明具有獨特的功能性阻斷能力[56]。
圖4.癌癥治療中的PD-1抑制劑通過阻斷PD-L1/PD-1通路發揮作用,從而在兩個關鍵點重新激活免疫系統的抗腫瘤反應:淋巴結中的識別階段和腫瘤微環境中的效應階段。這些抑制劑包括抗PD-1和抗PD-L1抗體,它們有效地破壞了使腫瘤能夠逃避免疫檢測的信號傳導。
注:腫瘤細胞或免疫細胞表面表達程序性死亡配體1(PD-L1),T細胞表面表達程序性死亡受體1(PD-1)。PD-L1與PD-1結合,抑制T細胞活性(Deactivation of Tcellactivity),使腫瘤細胞能夠逃避免疫監視。主要涉及的分子還有主要組織相容性復合體(MHC)和T細胞受體(TCR),MHC負責呈遞抗原給TCR,但PD-L1/PD-1結合阻礙了T細胞正常功能的發揮。
抗PD-L1抗體(Anti PD-L1 Antibody)與腫瘤細胞或免疫細胞表面的PD-L1結合,抗PD-1抗體(Anti PD-1 Antibody)與T細胞表面的PD-1結合。這兩種抗體的結合阻斷了PD-L1與PD-1的相互作用,激活T細胞活性(Activation of Tcellactivity)。活化的T細胞能夠識別并殺傷腫瘤細胞(Tumor Cell Death),重新啟動免疫系統對腫瘤細胞的攻擊,發揮抗腫瘤作用。
吉維單抗是專門為犬治療而開發的犬源化IgG單克隆抗體,也是一種檢查點抑制劑,它特異性靶向PD-1,重新激活犬的免疫系統以識別并對抗癌細胞。它是一種針對I期、II期和III期MCT以及III期黑色素瘤犬的全身性治療選擇。吉維單抗與犬PD-1結合,阻斷PD-L1/L2與PD-1之間的相互作用[59],從而增強免疫反應以對抗這些癌癥[60]。不良反應主要包括嗜睡和食欲不振/胃腸道紊亂[58],通常是輕微的。吉爾維單抗于2023年10月13日獲得美國農業部(USDA)有條件批準,用于治療患有MCT或黑色素瘤的犬[62]。
五、犬細小病毒單克隆抗體
犬細小病毒(CPV)是全球范圍內導致犬患病和死亡的常見原因。其高度傳染性、致命性會損害腸道內壁對營養的吸收,增加細菌感染的風險[63,64]。CPV是最具傳染性和危險性的犬類病毒之一,感染率高達91%,死亡率也極高[65]。盡管接種疫苗能顯著降低CPV感染風險,但對于已感染的犬,目前尚無完全有效的治療選擇。據估計,美國每年約有33萬例CPV感染病例有待治療[66]。
犬細小病毒單克隆抗體(CPMA)是美國農業部于2023年5月2日有條件批準的,用于治療8周齡及以上犬首次感染CPV的單劑量療法。給接觸過CPV的未接種疫苗幼犬注射該產品后,可降低發病率、加速臨床癥狀緩解并縮短住院時間。臨床試驗表明,CPMA單次靜脈注射在治療這種致命疾病方面具有針對性療效。
六、小結
全球已有超過160種單克隆抗體被批準用于治療人類疾病,如腫瘤、傳染病、慢性炎癥性疾病和心血管疾病等[71]。單克隆抗體療法有望為獸醫學中眾多未得到滿足的疾病治療需求提供解決方案。
治療性抗體在人類和動物健康領域都取得了巨大成功。治療性單克隆抗體為伴侶動物等小型動物疾病(如炎癥、腫瘤、自身免疫和傳染病)提供了精準的治療選擇。與傳統藥物不同,單克隆抗體具有特異性,可制定個性化治療策略,最大限度減少對健康組織的不良反應。隨著單克隆抗體研究和制造技術的進步,獸用單克隆抗體的療效和安全性有望逐步提高。未來,持續的研究和開發將在維持和改善伴侶動物健康和福祉方面發揮重要作用。
參考文獻
1. Tam, S.H.; McCarthy, S.G.; Brosnan, K.; Goldberg, K.M.; Scallon, B.J. Correlations between pharmacokinetics of IgG antibodies in primates vs. FcRn-transgenic mice reveal a rodent model with predictive capabilities. MAbs 2013, 5, 397–405. [CrossRef]
2. Lu, R.-M.; Hwang, Y.-C.; Liu, I.-J.; Lee, C.-C.; Tsai, H.-Z.; Li, H.-J.; Wu, H.-C. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 2020, 27, 1. [CrossRef]
3. Urquhart, L. Top companies and drugs by sales in 2022. Nat. Rev. Drug Discov. 2023, 22, 260. [CrossRef] [PubMed]
4. Research, P. Biopharmaceutical Market Size, 2023–2032. 2023. Available online: https://www.precedenceresearch.com/ biopharmaceutical-market (accessed on 27 January 2025).
5.Liu, J.K.H. The history of monoclonal antibody development—Progress, remaining challenges, and future innovations. Ann. Med. Surg. 2014, 3, 113–116. [CrossRef]
6.K?hler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 256, 495–497. [CrossRef] [PubMed]
7. He, M.; Taussig, M.J. Eukaryotic ribosome display with in situ DNA recovery. Nat. Methods 2007, 4, 281–288. [CrossRef]Animals 2025, 15, 472 14 of 16
8. Lu, J.; Ding, J.; Liu, Z.; Chen, T. Retrospective analysis of the preparation and application of immunotherapy in cancer treatment. Int. J. Oncol. 2022, 60, 12. [CrossRef]
9. Gamian, C.A. Phage display: A powerful technique for immunotherapy. Hum. Vaccines Immunother. 2012, 8, 1817–1828.
10. Ledsgaard, L.; Kilstrup, M.; Karatt-Vellatt, A.; McCafferty, J.; Laustsen, A.H. Basics of antibody phage display technology. Toxins 2018, 10, 236. [CrossRef]
11. Saw, P.E.; Song, E.W. Phage display screening of therapeutic peptides for cancer targeting and therapy. Protein Cell 2019, 10, 787–807. [CrossRef] [PubMed]
12. Traggiai, E.; Becker, S.; Subbarao, K.; Kolesnikova, L.; Uematsu, Y.; Gismondo, M.R.; Murphy, B.R.; Rappuoli, R.; Lanzavecchia, A. An efficient method to make human monoclonal antibodies from memory B cells: Potent neutralization of SARS coronavirus. Nat. Med. 2004, 10, 871–875. [CrossRef] [PubMed]
13. Wardemann, H.; Yurasov, S.; Schaefer, A.; Young, J.W.; Meffre, E.; Nussenzweig, M.C. Predominant autoantibody production by early human B cell precursors. Science 2003, 301, 1374–1377. [CrossRef]
14. Sgro, C. Side-effects of a monoclonal antibody, muromonab CD3/Orthoclone OKT3: Bibliographic review. Toxicology 1995, 105, 23–29. [CrossRef]
15. Tsurushita, N.; Hinton, P.R.; Kumar, S. Design of humanized antibodies: From anti-Tac to Zenapax. Methods 2005, 36, 69–83. [CrossRef]
16. Khan, A.H.; Sadroddiny, E. Licensed monoclonal antibodies and associated challenges. Hum. Antibodies 2015, 23, 63–72. [CrossRef] [PubMed]
17.Lee, S.; Ballow, M. Monoclonal antibodies and fusion proteins and their complications: Targeting B cells in autoimmune diseases. J. Allergy Clin. Immunol. 2010, 125, 814–820. [CrossRef] [PubMed]
18. Jones, P.T.; Dear, P.H.; Foote, J.; Neuberger, M.S.; Winter, G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 1986, 321, 522–525. [CrossRef] [PubMed]
19. Lee, S.J.; Chinen, J.; Kavanaugh, A. Immunomodulator therapy: Monoclonal antibodies, fusion proteins, cytokines, and immunoglobulins. J. Allergy Clin. Immunol. 2010, 125, S314–S323. [CrossRef]
20. Enomoto, M.; Mantyh, P.W.; Murrell, J.; Innes, J.F.; Lascelles, B.D.X. Anti-nerve growth factor monoclonal antibodies for the control of pain in dogs and cats. Vet. Rec. 2019, 184, 23. [CrossRef] [PubMed]
21. Ovacik, M.; Lin, K. Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development. Clin. Transl. Sci. 2018, 11, 540–552. [CrossRef]
22. Renukuntla, J.; Vadlapudi, A.D.; Patel, A.; Boddu, S.H.; Mitra, A.K. Approaches for enhancing oral bioavailability of peptides and proteins. Int. J. Pharm. 2013, 447, 75–93. [CrossRef] [PubMed]
23. Singh, R.; Singh, S.; Lillard, J.W., Jr. Past, present, and future technologies for oral delivery of therapeutic proteins. J. Pharm. Sci. 2008, 97, 2497–2523. [CrossRef] [PubMed]
24. Morishita, M.; Peppas, N.A. Is the oral route possible for peptide and protein drug delivery? Drug Discov. Today 2006, 11, 905–910. [CrossRef] [PubMed]
25. Dirks, N.L.; Meibohm, B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet. 2010, 49, 633–659. [CrossRef]
26. Lobo, E.D.; Hansen, R.J.; Balthasar, J.P. Antibody pharmacokinetics and pharmacodynamics. J. Pharm. Sci. 2004, 93, 2645–2668. [CrossRef]
27. Boswell, C.A.; Tesar, D.B.; Mukhyala, K.; Theil, F.P.; Fielder, P.J.; Khawli, L.A. Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjugate Chem. 2010, 21, 2153–2163. [CrossRef]
28.Rudnick, S.I.; Adams, G.P. Affinity and avidity in antibody-based tumor targeting. Cancer Biother. Radiopharm. 2009, 24, 155–161. [CrossRef] [PubMed]
29. Ryman, J.T.; Meibohm, B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacomet. Syst. Pharmacol. 2017, 6, 576–588. [CrossRef]
30. Walters, R.R.; Boucher, J.F.; De Toni, F. Pharmacokinetics and immunogenicity of frunevetmab in osteoarthritic cats following intravenous and subcutaneous administration. Front. Vet. Sci. 2021, 8, 687448. [CrossRef] [PubMed]
31. Hansel, T.T.; Kropshofer, H.; Singer, T.; Mitchell, J.A.; George, A.J. The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Discov. 2010, 9, 325–338. [CrossRef]
32. Sousa, C. Biologic therapy for companion animals—What is it? In Proceedings of the World Small Animal Veterinary Association Congress, Copenhagen, Denmark, 25–28 September 2017.
33. Malik, B.G.A. Understanding How Monoclonal Antibodies Work. Available online: https://www.ncbi.nlm.nih.gov/books/ NBK572118/ (accessed on 25 June 2023).
34. Castelli, M.S.; McGonigle, P.; Hornby, P.J. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol. Res. Perspect. 2019, 7, e00535. [CrossRef]Animals 2025, 15, 472 15 of 16
35. O’Shea, J.J.; Gadina, M.; Siegel, R.M. Cytokines and Cytokine Receptors. In Clinical Immunology, 5th ed.; Rich, R.R., Fleisher, T.A., Shearer, W.T., Schroeder, H.W., Frew, A.J., Weyand, C.M., Eds.; Elsevier: London, UK, 2019; pp. 127–155.e121.
36. Huang, J.; Yue, H.; Jiang, T.; Gao, J.; Shi, Y.; Shi, B.; Wu, X.; Gou, X. IL-31 plays dual roles in lung inflammation in an OVA-induced murine asthma model. Biol. Open 2019, 8, bio036244. [CrossRef]
37. Nemmer, J.M.; Kuchner, M.; Datsi, A.; Oláh, P.; Julia, V.; Raap, U.; Homey, B. Interleukin-31 signaling bridges the gap between immune cells, the nervous system and epithelial tissues. Front. Med. 2021, 8, 639097. [CrossRef] [PubMed]
38. Harris, C.T.; Cohen, S. Reducing immunogenicity by design: Approaches to minimize immunogenicity of monoclonal antibodies. BioDrugs 2024, 38, 205–226. [CrossRef] [PubMed]
39. Krautmann, M.; Walters, R.R.; King, V.L.; Esch, K.; Mahabir, S.P.; Gonzales, A.; Dominowski, P.J.; Sly, L.; Mwangi, D.; Foss, D.L.;et al. Laboratory safety evaluation of lokivetmab, a canine anti-interleukin-31 monoclonal antibody, in dogs. Vet. Immunol. Immunopathol. 2023, 258, 110574. [CrossRef] [PubMed]
40. Griffin, C.E.; DeBoer, D.J. The ACVD task force on canine atopic dermatitis (XIV): Clinical manifestations of canine atopic dermatitis. Vet. Immunol. Immunopathol. 2001, 81, 255–269. [CrossRef] [PubMed]
41. Outerbridge, C.A.; Jordan, T.J.M. Current knowledge on canine atopic dermatitis: Pathogenesis and treatment. Adv. Small Anim. Care 2021, 2, 101–115. [CrossRef] [PubMed]
42. Marsella, R.; Ahrens, K.; Sanford, R. Investigation of the correlation of serum IL-31 with severity of dermatitis in an experimental model of canine atopic dermatitis using Beagle dogs. Vet. Dermatol. 2018, 29, 69-e28. [CrossRef] [PubMed]
43. Fleck, T.J.; Norris, L.R.; Mahabir, S.; Walters, R.R.; Martinon, O.; Dunham, S.A.; Gonzales, A.J. Onset and duration of action of lokivetmab in a canine model of IL-31-induced pruritus. Vet. Dermatol. 2021, 32, 681-e182. [CrossRef] [PubMed]
44. Gonzales, A.J.; Fleck, T.J.; Humphrey, W.R.; Galvan, B.A.; Aleo, M.M.; Mahabir, S.P.; Tena, J.-K.; Greenwood, K.G.; McCall, R.B. IL-31-induced pruritus in dogs: A novel experimental model to evaluate anti-pruritic effects of canine therapeutics. Vet. Dermatol. 2016, 27, 34-e10. [CrossRef]
45. Moreau, D.; Cathelain, P.; Lacheretz, A. Comparative study of causes of death and life expectancy in carnivorous pets (II). Rev. Méd. Vét. 2003, 154, 127–132.
46. Sanderson, R.O.; Beata, C.; Flipo, R.M.; Genevois, J.P.; Macias, C.; Tacke, S.; Vezzoni, A.; Innes, J.F. Systematic review of the management of canine osteoarthritis. Vet. Rec. 2009, 164, 418–424. [CrossRef]
47. Belshaw, Z.; Asher, L.; Dean, R.S. The attitudes of owners and veterinary professionals in the United Kingdom to the risk of adverse events associated with using non-steroidal anti-inflammatory drugs (NSAIDs) to treat dogs with osteoarthritis. Prev. Vet. Med. 2016, 131, 121–126. [CrossRef] [PubMed]
48. Chang, D.S.; Hsu, E.; Hottinger, D.G.; Cohen, S.P. Anti-nerve growth factor in pain management: Current evidence. J. Pain Res. 2016, 9, 373–383. [CrossRef]
49. Gruen, M.E.; Myers, J.A.E.; Lascelles, B.D.X. Efficacy and safety of an anti-nerve growth factor antibody (frunevetmab) for the treatment of degenerative joint disease-associated chronic pain in cats: A multisite pilot field study. Front. Vet. Sci. 2021, 8, 610028. [CrossRef] [PubMed]
50. Willmann, M.; Hadzijusufovic, E.; Hermine, O.; Dacasto, M.; Marconato, L.; Bauer, K.; Peter, B.; Gamperl, S.; Eisenwort, G.; Jensen-Jarolim, E.; et al. Comparative oncology: The paradigmatic example of canine and human mast cell neoplasms. Vet. Comp. Oncol. 2019, 17, 1–10. [CrossRef] [PubMed]
51. Smith, S.H.; Goldschmidt, M.H.; McManus, P.M. A comparative review of melanocytic neoplasms. Vet. Pathol. 2002, 39, 651–678. [CrossRef] [PubMed]
52. Talavera Guillén, N.C.; Barboza de Nardi, A.; Noleto de Paiva, F.; Dias, Q.C.; Pinheiro Fantinatti, A.; Fávaro, W.J. Clinical implications of immune checkpoints and the RANK/RANK-L signaling pathway in high-grade canine mast cell tumors. Animals 2023, 13, 1888. [CrossRef] [PubMed]
53. Mizuno, T.; Kato, M.; Tsukui, T.; Igase, M. Development of an in vitro assay for screening programmed death receptor- 1/programmed cell death ligand 1 monoclonal antibody therapy in dogs. Vet. Immunol. Immunopathol. 2024, 274, 110792. [CrossRef]
54. Giuliano, A.; Pimentel, P.A.B.; Horta, R.S. Checkpoint inhibitors in dogs: Are we there yet? Cancers 2024, 16, 2003. [CrossRef] [PubMed]
55. Hamanishi, J.; Mandai, M.; Matsumura, N.; Abiko, K.; Baba, T.; Konishi, I. PD-1/PD-L1 blockade in cancer treatment: Perspectives and issues. Int. J. Clin. Oncol. 2016, 21, 462–473. [CrossRef] [PubMed]
56. Nemoto, Y.; Shosu, K.; Okuda, M.; Noguchi, S.; Mizuno, T. Development and characterization of monoclonal antibodies against canine PD-1 and PD-L1. Vet. Immunol. Immunopathol. 2018, 198, 19–25. [CrossRef] [PubMed]
57. Parvez, A.; Choudhary, F.; Mudgal, P.; Khan, R.; Qureshi, K.A.; Farooqi, H.; Aspatwar, A. PD-1 and PD-L1: Architects of immune symphony and immunotherapy breakthroughs in cancer treatment. Front. Immunol. 2023, 14, 1296341. [CrossRef]
58. Merck Animal Health. Gilvetmab: An Innovative Option for Treating Cancer. Available online: https://www.merck-animalhealth-usa.com/species/canine/products/gilvetmab-product-overview (accessed on 22 October 2023).Animals 2025, 15, 472 16 of 16
59. Yearley, J.H.; Gibson, C.; Yu, N.; Moon, C.; Murphy, E.; Juco, J.; Lunceford, J.; Cheng, J.; Chow, L.Q.M.; Seiwert, T.Y.; et al. PD-L2 expression in human tumors: Relevance to anti-PD-1 therapy in cancer. Clin. Cancer Res. 2017, 23, 3158–3167. [CrossRef]
60. Magee, K.; Marsh, I.R.; Turek, M.M.; Grudzinski, J.; Aluicio-Sarduy, E.; Engle, J.W.; Kurzman, I.D.; Zuleger, C.L.; Oseid, E.A.; Jaskowiak, C.; et al. Safety and feasibility of an in situ vaccination and immunomodulatory targeted radionuclide combination immuno-radiotherapy approach in a comparative (companion dog) setting. PLoS ONE 2021, 16, e0255798. [CrossRef]
61. Merck Animal Health. Gilvetmab Product Insert. 2022. Available online: https://merckusa.cvpservice.com/product/basic/ view/1047586 (accessed on 27 January 2025).
62. Merck Animal Health. Merck Animal Health Announces Availability of Novel Canine Oncology Therapy to Board-Certified Veterinary Oncologists Nationwide. Available online: https://www.merck-animal-health.com/blog/2023/10/13/merck-animalhealth-announces-availability-of-novel-canine-oncology-therapy-to-board-certified-veterinary-oncologists-nationwide/ (accessed on 22 October 2023).
63. Hartmann, S.R.; Charnesky, A.J.; Früh, S.P.; López-Astacio, R.A.; Weichert, W.S.; DiNunno, N.; Cho, S.H.; Bator, C.M.; Parrish, C.R.; Hafenstein, S.L. Cryo-EM structures map a post-vaccination polyclonal antibody response to canine parvovirus. Commun. Biol. 2023, 6, 955. [CrossRef] [PubMed]
64. Mazzaferro, E.M. Update on canine parvoviral enteritis. Vet. Clin. N. Am. Small Anim. Pract. 2020, 50, 1307–1325. [CrossRef] [PubMed]
65. Venn, E.C.; Preisner, K.; Boscan, P.L.; Twedt, D.C.; Sullivan, L.A. Evaluation of an outpatient protocol in the treatment of canine parvoviral enteritis. J. Vet. Emerg. Crit. Care 2017, 27, 52–65. [CrossRef]
66. Elanco Animal Health. VetSuccess Parvovirus Incidence Analysis. Available online: https://www.elanco.com/en-us/news/ elanco-announces-breakthrough-treatment-for-deadly-canine-parvovirus (accessed on 22 October 2023).
67. Nelson, C.D.S.; Palermo, L.M.; Hafenstein, S.L.; Parrish, C.R. Different mechanisms of antibody-mediated neutralization of parvoviruses revealed using the Fab fragments of monoclonal antibodies. Virology 2007, 361, 283–293. [CrossRef] [PubMed]
68. EMA. Applying for EU Marketing Authorization for Medicinal Products for Veterinary Use; European Medicines Agency: Amsterdam, The Netherlands, 2015.
69. Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC. Official Journal of the European Union. L 4. 11 December 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0006 (accessed on 20 December 2024).
70. EMA. Questions and Answers on Monoclonal Antibodies for Veterinary Use; European Medicines Agency: Amsterdam, The Netherlands, 2017. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/questions-and-answersmonoclonal-antibodies-veterinary-use_en.pdf (accessed on 27 January 2025).
71. Lyu, X.; Zhao, Q.; Hui, J.; Wang, T.; Lin, M.; Wang, K.; Zhang, J.; Shentu, J.; Dalby, P.A.; Zhang, H.; et al. The global landscape of approved antibody therapies. Antib. Ther. 2022, 5, 233–257. [CrossRef]
72. Sousa, C.A. Introduction to monoclonal antibody therapy. Atl. Coast Vet. Conf. Proc. 2017, 1–4.
73. Singh, R.; Chandley, P.; Rohatgi, S. Recent Advances in the Development of Monoclonal Antibodies and Next-Generation Antibodies. ImmunoHorizons 2023, 7, 886–897. [CrossRef]
74. Pirkalkhoran, S.; Grabowska, W.R.; Kashkoli, H.H.; Mirhassani, R.; Giuliano, D.; Dolphin, C.; Khalili, H. Bioengineering of antibody fragments: Challenges and opportunities. Bioengineering 2023, 10, 122. [CrossRef]
75. Imig, J.D.; Merk, D.; Proschak, E. Multi-target drugs for kidney diseases. Kidney360 2021, 2, 1645–1653. [CrossRef]
注:本站信息僅供獸醫專業人士參考,可為動物疾病診斷與治療提供思路,但不構成直接醫療指導。本站轉載或引用文章如涉及版權問題,請速與我們聯系,對此造成的不便深表歉意!
1點學苑
立即點擊圖片預約課程吧
點擊圖片了解課程詳情
實操課程介紹
點擊圖片了解課程詳情點擊圖片了解課程詳情
注射用重組犬干擾素α突變體(凍干型) 對人工復制比格犬細小病毒病的藥效試驗
犬細小病毒感染癥的防治原則
卡洛芬:犬骨關節炎與疼痛管理
潑尼松龍聯合霉酚酸酯治療犬免疫介導性多關節炎的療效評估
本文只是冰山一角!想了解更多專業分析?我們已整理在【寵物醫師網】
點擊單克隆抗體在小動物醫學中的應用進展,解鎖文獻
文章來源|animals
翻譯編輯|張秋雁
審 核|郭羽麗
特別聲明:以上內容(如有圖片或視頻亦包括在內)為自媒體平臺“網易號”用戶上傳并發布,本平臺僅提供信息存儲服務。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.