大家好,我是i學習的老章
周末了,推薦一個新項目——AI工程師轉型路線圖
tips:搭配之前我推薦的幾個工具一起食用,效果更佳
項目地址:https://github.com/InterviewReady/ai-engineering-resourcesTokenization 分詞處理
Byte-pair Encoding
https://arxiv.org/pdf/1508.07909Byte Latent Transformer: Patches Scale Better Than Tokens
https://arxiv.org/pdf/2412.09871
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
https://arxiv.org/pdf/1810.04805IMAGEBIND: One Embedding Space To Bind Them All
https://arxiv.org/pdf/2305.05665SONAR: Sentence-Level Multimodal and Language-Agnostic Representations
https://arxiv.org/pdf/2308.11466FAISS library
https://arxiv.org/pdf/2401.08281Facebook Large Concept Models
https://arxiv.org/pdf/2412.08821v2
TensorFlow
https://arxiv.org/pdf/1605.08695Deepseek filesystem
https://github.com/deepseek-ai/3FS/blob/main/docs/design_notes.mdMilvus DB
https://www.cs.purdue.edu/homes/csjgwang/pubs/SIGMOD21_Milvus.pdfBillion Scale Similarity Search : FAISS
https://arxiv.org/pdf/1702.08734Ray
https://arxiv.org/abs/1712.05889
Attention is All You Need
https://papers.neurips.cc/paper/7181-attention-is-all-you-need.pdfFlashAttention
https://arxiv.org/pdf/2205.14135Multi Query Attention
https://arxiv.org/pdf/1911.02150Grouped Query Attention
https://arxiv.org/pdf/2305.13245Google Titans outperform Transformers
https://arxiv.org/pdf/2501.00663VideoRoPE: Rotary Position Embedding
https://arxiv.org/pdf/2502.05173
Sparsely-Gated Mixture-of-Experts Layer
https://arxiv.org/pdf/1701.06538GShard
https://arxiv.org/abs/2006.16668Switch Transformers
https://arxiv.org/abs/2101.03961
Deep Reinforcement Learning with Human Feedback
https://arxiv.org/pdf/1706.03741Fine-Tuning Language Models with RHLF
https://arxiv.org/pdf/1909.08593Training language models with RHLF
https://arxiv.org/pdf/2203.02155
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
https://arxiv.org/pdf/2201.11903Chain of thought
https://arxiv.org/pdf/2411.14405v1/Demystifying Long Chain-of-Thought Reasoning in LLMs
https://arxiv.org/pdf/2502.03373
Transformer Reasoning Capabilities
https://arxiv.org/pdf/2405.18512Large Language Monkeys: Scaling Inference Compute with Repeated Sampling
https://arxiv.org/pdf/2407.21787Scale model test times is better than scaling parameters
https://arxiv.org/pdf/2408.03314Training Large Language Models to Reason in a Continuous Latent Space
https://arxiv.org/pdf/2412.06769DeepSeek R1
https://arxiv.org/pdf/2501.12948v1A Probabilistic Inference Approach to Inference-Time Scaling of LLMs using Particle-Based Monte Carlo Methods
https://arxiv.org/pdf/2502.01618Latent Reasoning: A Recurrent Depth Approach
https://arxiv.org/pdf/2502.05171Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo
https://arxiv.org/pdf/2504.13139
The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits
https://arxiv.org/pdf/2402.17764FlashAttention-3: Fast and Accurate Attention with Asynchrony and Low-precision
https://arxiv.org/pdf/2407.08608ByteDance 1.58
https://arxiv.org/pdf/2412.18653v1Transformer Square
https://arxiv.org/pdf/2501.06252Inference-Time Scaling for Diffusion Models beyond Scaling Denoising Steps
https://arxiv.org/pdf/2501.097321b outperforms 405b
https://arxiv.org/pdf/2502.06703Speculative Decoding
https://arxiv.org/pdf/2211.17192
Distilling the Knowledge in a Neural Network
https://arxiv.org/pdf/1503.02531BYOL - Distilled Architecture
https://arxiv.org/pdf/2006.07733DINO
https://arxiv.org/pdf/2104.14294
RWKV: Reinventing RNNs for the Transformer Era
https://arxiv.org/pdf/2305.13048Mamba
https://arxiv.org/pdf/2312.00752Transformers are SSMs: Generalized Models and Efficient Algorithms Through Structured State Space Duality
https://arxiv.org/pdf/2405.21060Distilling Transformers to SSMs
https://arxiv.org/pdf/2408.10189LoLCATs: On Low-Rank Linearizing of Large Language Models
https://arxiv.org/pdf/2410.10254Think Slow, Fast
https://arxiv.org/pdf/2502.20339
Google Math Olympiad 2
https://arxiv.org/pdf/2502.03544Competitive Programming with Large Reasoning Models
https://arxiv.org/pdf/2502.06807Google Math Olympiad 1
https://www.nature.com/articles/s41586-023-06747-5
Can AI be made to think critically
https://arxiv.org/pdf/2501.04682Evolving Deeper LLM Thinking
https://arxiv.org/pdf/2501.09891LLMs Can Easily Learn to Reason from Demonstrations Structure
https://arxiv.org/pdf/2502.07374
Separating communication from intelligence
https://arxiv.org/pdf/2301.06627Language is not intelligence
https://gwern.net/doc/psychology/linguistics/2024-fedorenko.pdf
Image is 16x16 word
https://arxiv.org/pdf/2010.11929CLIP
https://arxiv.org/pdf/2103.00020deepseek image generation
https://arxiv.org/pdf/2501.17811
ViViT: A Video Vision Transformer
https://arxiv.org/pdf/2103.15691Joint Embedding abstractions with self-supervised video masks
https://arxiv.org/pdf/2404.08471Facebook VideoJAM ai gen
https://arxiv.org/pdf/2502.02492
Automated Unit Test Improvement using Large Language Models at Meta
https://arxiv.org/pdf/2402.09171Retrieval-Augmented Generation with Knowledge Graphs for Customer Service Question Answering
https://arxiv.org/pdf/2404.17723v1OpenAI o1 System Card
https://arxiv.org/pdf/2412.16720LLM-powered bug catchers
https://arxiv.org/pdf/2501.12862Chain-of-Retrieval Augmented Generation
https://arxiv.org/pdf/2501.14342Swiggy Search
https://bytes.swiggy.com/improving-search-relevance-in-hyperlocal-food-delivery-using-small-language-models-ecda2acc24e6Swarm by OpenAI
https://github.com/openai/swarmNetflix Foundation Models
https://netflixtechblog.com/foundation-model-for-personalized-recommendation-1a0bd8e02d39Model Context Protocol
https://www.anthropic.com/news/model-context-protocoluber queryGPT
https://www.uber.com/en-IN/blog/query-gpt/
最后推薦一個最近我在學習的大模型課程
特別聲明:以上內容(如有圖片或視頻亦包括在內)為自媒體平臺“網易號”用戶上傳并發布,本平臺僅提供信息存儲服務。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.