6月6日,2025北京智源大會(huì)開幕。在當(dāng)天以具身智能為主題的圓桌環(huán)節(jié)中,幾家國內(nèi)外知名的機(jī)器人企業(yè)代表出席參加,并發(fā)表了對行業(yè)的最新看法。本次圓桌嘉賓包括:
王興興|宇樹科技CEO
熊友軍| 北京人形機(jī)器人創(chuàng)新中心總經(jīng)理
王 鶴| 北京大學(xué)助理教授、智源具身智能研究中心主任、銀河通用創(chuàng)始人兼CTO
盧策吾| 穹徹智能聯(lián)合創(chuàng)始人、上海交通大學(xué)教授、上海創(chuàng)智學(xué)院副院長
Karol Hausman| Physical Intelligence聯(lián)合創(chuàng)始人兼CEO
主持人:王仲遠(yuǎn)| 智源研究院院長
RoboX對他們的鮮明觀點(diǎn)進(jìn)行了篩選摘要,整理如下:
再談人形載體
王興興:過去幾年,我在一些活動(dòng)中已公開說過多次,我并不堅(jiān)持一定要做人形。對于宇樹來說,做機(jī)器狗和人形其實(shí)都是順理成章的事情。
在下肢層面,輪子、底盤都還是非常實(shí)用的。之所以大家現(xiàn)在喜歡用人形,尤其是上半身人形,還是主要因?yàn)楝F(xiàn)在的AI多數(shù)還是基于人的數(shù)據(jù)來進(jìn)行采集和訓(xùn)練,讓機(jī)器人與人體動(dòng)作保持一致,數(shù)據(jù)采集會(huì)方便很多。另外,如果不做成人形,跳舞或者格斗基本都沒辦法做成。
不過,在真正AGI實(shí)現(xiàn)后,機(jī)器人會(huì)產(chǎn)生千奇百怪的形態(tài),甚至可能比現(xiàn)在要多100倍。
熊友軍:我同意王興興的說法。具身智能的形態(tài)不一定局限于人形,人形只是具身智能里面一個(gè)比較好的載體。不過我比較認(rèn)可人「形機(jī)器人應(yīng)該是具身智能研究的最佳載體」,這是從未來市場容量這方面來考慮的。
1、未來機(jī)器人最大的市場應(yīng)該是商用服務(wù)場景,包括家庭場景。今天工廠的應(yīng)用場景只是一個(gè)開胃小菜。
2、從人機(jī)交互來看,人形的交互更自然,更容易被人接受。
3、我們所處的環(huán)境大部分都是為人類設(shè)計(jì)的,人形機(jī)器人在部署的過程中,適應(yīng)起來是更加便利的。它可以方便地使用我們的工具,不需要做太多改造。
所以從這幾個(gè)角度來說,人形機(jī)器人應(yīng)該是最好的一種選擇。
我明白大家的顧慮是覺得目前人形的成本和技術(shù)不占優(yōu)勢,但如果放在一條長的時(shí)間線上來看的話,我堅(jiān)持人形一定還會(huì)是一個(gè)較好的載體。
VLA只是一個(gè)起點(diǎn)
王鶴:自動(dòng)駕駛驗(yàn)證了一件事情,就是端到端的方案具備更好的擴(kuò)展性。它能通過數(shù)據(jù)去真正地驅(qū)動(dòng)模型,而不是靠無窮無盡的規(guī)則。
這條路其實(shí)自動(dòng)駕駛走了很多年,但是現(xiàn)在鋪開的在全國各地都能開的車,其實(shí)不是通過模塊化的方案,而是端到端的。
從這個(gè)角度上講,VLA的意義在于什么?
VLA可以通過視覺觀測、自然語言下達(dá)的命令等信息,端到端地輸出動(dòng)作,不經(jīng)過任何的中間產(chǎn)物。它能夠真正地充分吸收數(shù)據(jù)背后的知識(shí),發(fā)揮出最大的性能,而不受制于一些模塊化方案中間階段的誤差,以及無窮無盡的規(guī)則兜底等問題。
那么VLA究竟要突破什么?我相信也是有不同的觀點(diǎn)的。有些人認(rèn)為應(yīng)該把人類能做的一切事情,都快速地做進(jìn)VLA,然后形成一個(gè)基座模型。
我覺得這是有點(diǎn)太著急了:我們?nèi)祟惼鋵?shí)除了視覺輸入,還有觸覺、聽覺、嗅覺、味覺,和溫覺。
所以VLA只能是一個(gè)起點(diǎn)。
要真想做到人類級(jí)別的具身智能,那只能不斷地融合新的模態(tài)。目前最適合做的,就是移動(dòng)、抓取和放置。這幾個(gè)技能基本以視覺為主,末端再加上觸覺或力覺的傳感器,就能夠很好地執(zhí)行。
而且它在工業(yè)、商業(yè)服務(wù)中有非常廣泛的應(yīng)用。如果我們能把這樣的VLA先做好應(yīng)用,在各種場景里都能部署進(jìn)去,我們就會(huì)見證具身智能第一個(gè)真正高潮的到來。
盧策吾:V代表理解世界,L溝通交互,A改變世界,這是集合了機(jī)器人這幾年要干的事情。
而且這里的L很妙——語言是一種粘合劑,她能通過數(shù)據(jù)將各種高層應(yīng)用連接在一起。
它確實(shí)有很好的擴(kuò)展性,但也存在很大的限制,需要我們?nèi)ネ七M(jìn)。
我們也會(huì)想要星辰大海,走向通用智能,但相比于無人車來說,機(jī)器人的任務(wù)和交互復(fù)雜度太高了。所以,如果想做通用,那就得要壓縮它的不確定性。
VLA相當(dāng)于是火鍋底料,現(xiàn)在只能清湯寡水,服務(wù)一部分人。要想服務(wù)更多人,我們需要不停地在里面加?xùn)|西,也就是更多額外的信息,使得VLA更加powerful,能在兼容的框架里加更多的信息,壓縮不確定性。
在這樣的端對端的模型里,壓縮的方式有很多種。比如穹徹一直在做的力反饋。有了力反饋之后,它的穩(wěn)定性會(huì)更高。
另外,在理解世界層面,如果能在視覺基礎(chǔ)上,加深對物理層面的理解,那也可以進(jìn)一步地壓縮不確定空間。
所以在穹徹第二版的大腦中,又加了很多東西:比如優(yōu)化數(shù)據(jù)資產(chǎn)的方法,以及力反饋帶來的新的試驗(yàn)?zāi)P停瑪?shù)據(jù)需求量會(huì)大大下降。
我們很期待找到更聰明、更加理解世界的方式,一步一步推進(jìn)到通用的拐點(diǎn)。
Karol Hausman:我認(rèn)為目前仍存在一些瓶頸。最大的一個(gè)瓶頸就是這些模型的成功率尚未達(dá)到必要的水平。這不僅僅是收集數(shù)據(jù)的問題,似乎還需要在算法上進(jìn)行一些改進(jìn)。
我認(rèn)為,即使我們擁有無限量的數(shù)據(jù),也無法僅憑現(xiàn)有的算法,在復(fù)雜、長期且需要高度靈巧的任務(wù)中實(shí)現(xiàn)100%的成功率。
我認(rèn)為這需要新的技術(shù),這也是我們正在努力解決的問題。
如果你幾個(gè)月前問我這個(gè)問題,我會(huì)說最大的瓶頸是泛化能力。但基于PI已經(jīng)分享的成果,我相信我們已經(jīng)掌握了如何改進(jìn)泛化能力的方法。而且我認(rèn)為,解決泛化能力問題的答案主要來自于數(shù)據(jù)。
然而,當(dāng)涉及到性能問題時(shí),我認(rèn)為這更多是一個(gè)算法問題,而非數(shù)據(jù)問題。
各企業(yè)的最新進(jìn)展
王興興:無論是在春晚上的集群表演,還是格斗比賽,我們都希望給大家展示出當(dāng)前的機(jī)器人技術(shù)發(fā)展?fàn)顩r,也希望帶動(dòng)整個(gè)行業(yè)的發(fā)展。
目前機(jī)器人還不能直接去家里或工廠干活,但在實(shí)現(xiàn)之前,我們已經(jīng)取得了一些技術(shù)成果,也進(jìn)行了一些商業(yè)化拓展及嘗試。
我相信類似于機(jī)器人格斗的賽事,明年會(huì)成為在全球都備受歡迎的體育賽事。
(在現(xiàn)場,參加機(jī)器人格斗競技的宇樹G1上臺(tái)進(jìn)行了拳擊表演,擬人度與靈活度極高。)
熊友軍:天工1.0在半程馬拉松比賽上,跑出了2小時(shí)40分的成績,被證明是最能跑的機(jī)器人。而我們希望天工2.0能做更多的事情,所以重點(diǎn)升級(jí)了上肢部分,所以它有更多的自由度,同時(shí)加裝了靈巧手,也有了更多的負(fù)重能力。
這是一次系統(tǒng)性的更新,包括了4方面平臺(tái)能力的升級(jí):
1、硬件平臺(tái):主打草地、沙地、丘陵、石子等各種路形地面的適應(yīng)能力。
2、大腦升級(jí):今年3月,北京人形機(jī)器人創(chuàng)新中心發(fā)布了通用的具身智能「慧思開物」平臺(tái),它是一腦多機(jī)的平臺(tái),包含了具身智能的大腦和小腦。
3、中心構(gòu)建了大型的數(shù)據(jù)采集和機(jī)器人訓(xùn)練中心,包含了20多個(gè)場景,方便虛實(shí)結(jié)合的數(shù)據(jù)采集。
4、中心構(gòu)建了數(shù)據(jù)采集處理、服務(wù)人才培養(yǎng)的一整套體系,用來升級(jí)不斷迭代和升級(jí)慧思開物的智能體。
(在現(xiàn)場,熊友軍用語音指令讓天工2.0「準(zhǔn)備一些茶點(diǎn)」,后者聽懂指令并選取了幾種食品)
王鶴:今年我們利用VLA技術(shù),打造了適用性更強(qiáng)的端到端具身大模型,更貼近一般商超貨架的這樣的場景。
該模型能夠?qū)ω浖苌狭宅槤M目的、形態(tài)各異貨品進(jìn)行識(shí)別抓取。
從技術(shù)特點(diǎn)來看,我們不同于PI,訓(xùn)練數(shù)據(jù)主要使用了合成數(shù)據(jù),而且是價(jià)格非常的低廉、能夠擴(kuò)增的合成數(shù)據(jù)。
(王鶴用一臺(tái)輪式底盤的人形機(jī)器人進(jìn)行了演示,他通過語音指令,讓機(jī)器人從密集的貨架上,成功取下安慕希酸奶和果粒爽果凍。)
盧策吾:我們?nèi)ツ臧l(fā)布了穹徹具身大腦的V1版本,接下來會(huì)在7月發(fā)布V2版本,新版本體現(xiàn)了對于世界物理的理解和交互。
這里我們要強(qiáng)調(diào)力反饋——人類在做很多動(dòng)作的時(shí)候,其實(shí)人都是下意識(shí)的。
比如刮胡子就是一個(gè)很典型的案例,在連續(xù)接觸皮膚的過程中,力氣大一點(diǎn)的話會(huì)刮傷皮膚,力氣小一點(diǎn)又會(huì)刮不干凈,所以力反饋就是魯棒性極高的、模仿人類的下意識(shí)動(dòng)作的關(guān)鍵技術(shù)。
還有一個(gè)案例是挖冰淇淋。它每次抓取時(shí)都需要應(yīng)對變化,動(dòng)作要非常精確。尤其當(dāng)凍得比較硬的時(shí)候,如果不具備力反饋,是挖不出來的。
接下來,將力反饋擴(kuò)展到生活場景中是非常必要的,比如照顧人時(shí)幫忙擦臉、按摩等多種交互。
(盧策吾還演示了刮冰淇淋的人形機(jī)器人,并表示該功能已經(jīng)在食品加工行業(yè)批量化落地。)
Karol Hausman:我覺得目前機(jī)器人還遠(yuǎn)未達(dá)到應(yīng)有的水平。我們希望將機(jī)器人通用大模型提供給所有人,讓那些正在執(zhí)行實(shí)質(zhì)任務(wù)、改變世界的機(jī)器人都能從中受益。
在很長一段時(shí)間里,我們都認(rèn)為讓機(jī)器人適應(yīng)一個(gè)完全陌生的環(huán)境是不可能的。
在此背景下,我們選擇以終極挑戰(zhàn)——家庭環(huán)境作為測試場景。對我們而言,這就是檢驗(yàn)其泛化能力的最高標(biāo)準(zhǔn)——工廠環(huán)境往往比較相似,但家庭環(huán)境卻并非如此。
在開展這項(xiàng)研究時(shí),我們面臨一個(gè)重大問題:機(jī)器人需要見識(shí)多少種不同的數(shù)據(jù),才能具備在全新家庭環(huán)境中泛化的能力?結(jié)果發(fā)現(xiàn),這個(gè)數(shù)字其實(shí)并不大。
我們發(fā)現(xiàn),機(jī)器人只需見識(shí)100個(gè)不同的家庭,就能具備在第101個(gè)家庭環(huán)境中泛化的能力。
當(dāng)然,這并不意味著每次都能成功,機(jī)器人仍然會(huì)經(jīng)常失敗,但我認(rèn)為這已經(jīng)展現(xiàn)出了非常好的前景——或許我們并不需要那么多的數(shù)據(jù),機(jī)器人也不需要見識(shí)數(shù)據(jù)集中如此龐大的多樣性,就能真正具備泛化能力。
我們才剛剛起步,但這已經(jīng)是一個(gè)極具希望的跡象,也是我們未曾預(yù)料到的。
特別聲明:以上內(nèi)容(如有圖片或視頻亦包括在內(nèi))為自媒體平臺(tái)“網(wǎng)易號(hào)”用戶上傳并發(fā)布,本平臺(tái)僅提供信息存儲(chǔ)服務(wù)。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.